We explore a means, originally suggested by Schrödinger in 1944, by which mutations as quantum transitions of a whole organism may be physically feasible. Like an electron in a hydrogen atom makes a transition to a higher energy state upon absorption of a photon, the organism transitions to a more stable energy state – probably by absorption of a photon in the UV spectrum (chapter VIII). There are several substantial challenges that must be met for this to be physically plausible.
First up, the trouble with quantum theories and evolution is that quantum mechanics does not care about fitness, or survival, it only cares about energy states, e.g. the ground state, or first excited state in the hydrogen atom. We bridge this gap by showing that stress in the environment induces instability in the organism’s energy state. The key is recognizing a.) that entanglement itself plays a role in binding the organism together – something which has been shown to be true in the case of the electron clouds of DNA. But, b.) environmental stress muddles it. Therefore, adapting to stress means a mutation that tends to increase, or at least restore entanglement. This upside bias in entanglement leads to the selective bias toward higher complexity. The quantum transition, which involves tautomerization of nucleotides in DNA via quantum tunneling (C<->A, G<->T) and photon absorption, is thus to a more stable energy configuration (chapter XI).
Second, for a quantum transition to occur, the organism must have the relevant pieces entangled together as One system of molecules (DNA<->RNA<->Proteins). In other words, the proteins in contact with the environment must been entangled with the DNA that encodes them so they function as one system (chapter XI). The marginal stability of proteins – the small energy differences between various configurations – is an essential characteristic too (chapter IV). If true, this empowers the system with the infinite computational power of quantum mechanics (a power illuminated plainly, and computationally modeled by the path integral formulation of quantum mechanics) (chapter V). The quantum calculus of photon absorption, and thereby mutation to the DNA sequence, instantaneously considers all the possible pathways by which the organism might adapt to the stress. The collective sum of these path integrals can be thought of as a sort of hologram. The path chosen is the result of quantum probabilities manifested in a complex holographic interference pattern. This hologram is not in the visual spectrum but in the frequency range relevant to the vibrational, conformational and other states of biomolecules – probably THz among others. It is the coherent tool an organism uses to direct its’ own growth non-locally – like DNA directs its own transcription (chapter X). An analogy is drawn to quasicrystals where vast collective, non-local atomic rearrangements, called phasons, are seen to occur in the laboratory, elucidating quantum mechanical effects on an intermediate scale (chapter IX).
Third, while it is virtually impossible to imagine the sustained static quantum entanglement that scientists pursue in today’s quantum computers in biological systems, i.e. decoherence, biology takes a different tact. Its approach is dynamical, with constant renewed entanglement and constant decoherence (chapter VIII). It is closer, by analogy, to the dynamical environment described in a quantum network where entanglement can be restored and extended over vast distances (chapter VII). Research has shown dynamical entangled quantum systems can exist in environments even when static entanglement is impossible (chapter VIII). This is crucial to life and critical to the miracles of evolution.
Fourth, even with the infinite computational power of quantum mechanics available to the organism, focusing this computational power is critical to leveraging it, just as interference is critical to Shor’s factoring algorithm (chapter V), and for that, life needs to control its own complexity (chapter III). The simplest description of the world is the correct one – the philosophical principle of Occam’s razor (chapter II). This principle forces DNA to keep the blueprint of the organism simple so that the genetic code is modularized, objected oriented, plug-and-play like. This gives the path integrals a fighting chance of finding a working adaptation to environmental stress. But, the relationship is reciprocal. A simple description of the organism is equivalent to a more stable energy state – a key point derived from machine learning (chapter III). A key result of this is that mutations cannot be truly random, they have an element of quantum mechanical uncertainty for sure, but they must be very organized in nature, swapping out one module for another. And this is, indeed, what we see in experiments: organism can change a few nucleotides, delete sections, insert sections, or even make gross genetic rearrangements to adapt to stress with minimal failures (chapter XII). All are allowed quantum transitions with various probabilities given by the mathematics of quantum mechanics of complex dynamical systems- as described in the solution to the quantum measurement problem (chapter VI). This high degree of ordered simplicity combined with quantum computational power is the secret of the miraculous leaps that occur in evolutionary pathways (chapter XI).
Last, this description of biological systems allows us to draw an analogy between some very personal, first person experiences and the fundamental quantum mechanical nature of the universe. For instance, “love” is naturally affiliated with “Oneness”, or becoming “One” with others – like quantum entanglement is to particles. “Understanding” is also a fundamental defining trait of the human experience, yet life is utilizing this principle in DNA – manifest in its simplicity – from life’s very beginning. And, “creativity”, something that we as humans take such pride in, appears as the result of the infinite quantum computational power of the universe at the level of basic particles. Creative capacity grows as organisms, and the entanglement therein, grows more complex – it doesn’t suddenly appear. In higher-level organisms the range of creativity transitions from just the space of biomolecules and DNA to the external space of human endeavor (via the brain), but this is still all creativity nonetheless. A picture irresistibly emerges that these three traits, “love”, “understanding”, and “creativity” aren’t random accidental traits selected for the during “X billion years of evolution” at all, but defining characteristics of the quantum mechanical universe all the way from humans, to single-cell life, to sub-cellular life, to fundamental particles. It is a picture in which natural selection plays a role, but in which life is a cooperative, not a cutthroat competition. Indeed, the metaphor that life is the Universe trying to understand itself is apropos (chapter XII).
Mind blowing blog.
Brilliant! This needs to be a book.